Feature Cluster Selection for High-Throughput Data Analysis
International Journal of Data Mining and Bioinformatics(2009)
摘要
Feature selection is effective in selecting predictive gene sets for microarray classification. However, the large number of predictive gene sets and the disparity among them presents a challenge for identifying potential biomarkers. To facilitate biomarker identification, we present a new data mining task, feature cluster selection, which selects from a full set of features a small number of coherent and predictive feature clusters. We provide both theoretical definition and empirical formulation for the new problem, and propose an efficient 3M algorithm. Experiments on microarray data have shown that the 3M algorithm can select predictive and statistically significant gene clusters.
更多查看译文
关键词
bioinformatics,data mining,feature selection,feature cluster selection,biomarker identification,high-throughput data
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn