一种基于用户偏好自动分类的社会媒体共享和推荐方法
Jisuanji xuebao(2012)
摘要
社会媒体应用已成为Web应用的主流,以用户为中心并且海量媒体数据由用户自生成是社会媒体Web应用的重要特征.应对目前社会媒体环境中信息过载的问题,信息的共享和推荐机制发挥着重要的作用.文中分析了目前主流社会媒体网站基于用户自建组的信息共享机制所存在的问题以及传统推荐技术在效率上的问题,提出了一种新的基于用户偏好自动分类的社会媒体数据共享和推荐方法.直观上讲,该方法的本质是把用户对具体媒体对象的偏好转化成用户对媒体对象所蕴含兴趣元素的偏好,然后把具有相同偏好的用户,即对若干兴趣元素上的兴趣度都相同,自动聚合成为一个“共同偏好组(CPG)”.文中提出了基于CPG的社会媒体信息共享和推荐的架构,设计实现了CPG的自动生成算法,通过随机生成模拟数据集实验详细分析了算法性能的影响因素,并与现有类似功能算法进行了效率对比,实验结果表明算法可适用于具有海量用户的社会媒体应用.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn