Dietary Profiling of Physical Frailty in Older Age Phenotypes Using a Machine Learning Approach: the Salus in Apulia Study

EUROPEAN JOURNAL OF NUTRITION(2023)

引用 1|浏览5
摘要
Growing awareness of the biological and clinical value of nutrition in frailty settings calls for further efforts to investigate dietary gaps to act sooner to achieve focused management of aging populations. We cross-sectionally examined the eating habits of an older Mediterranean population to profile dietary features most associated with physical frailty. Clinical and physical examination, routine biomarkers, medical history, and anthropometry were analyzed in 1502 older adults (65 +). CHS criteria were applied to classify physical frailty, and a validated Food Frequency Questionnaire to assess diet. The population was subdivided by physical frailty status (frail or non-frail). Raw and adjusted logistic regression models were applied to three clusters of dietary variables (food groups, macronutrients, and micronutrients), previously selected by a LASSO approach to better predict diet-related frailty determinants. A lower consumption of wine (OR 0.998, 95
更多
查看译文
关键词
Food intake,Dietary habits,Mediterranean diet,Salus in Apulia Study,Older population,Physical frailty
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn