Real-time Pedestrian Detection Based on A Hierarchical Two-Stage Support Vector Machine
2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA)(2013)
摘要
This Paper presents an SVM (Support Vector Machine) based real-time pedestrian detection scheme for next-generation automotive vision applications. To meet the requirement of real-time detection with high accuracy, we designed the proposed system consisting of 2-stage hierarchical SVMs. In the proposed system, most of the input data are classified by the 1st stage linear SVM and only the inputs between positive and negative hyper-plane of the linear SVM are transferred to the 2nd stage non-linear SVM. This hierarchical 2-stage classifier can be suited for various systems via controlling the amount of data processed by the 2nd stage classifier, which trades off the detection accuracy and the required system resources. To make the proposed 2nd stage non-linear SVM further appropriate for various systems, a hyper-plane approximation technique by sample pruning has been adopted. By reducing the number of required SVs (Support Vectors) using this technique and controlling the amount of data processed via the 2nd stage classifier, high precision non-linear SVM can be employed in the proposed real-time pedestrian detection system. Simulations using HOG (Histogram of Oriented Gradient) features and Daimler pedestrian dataset show the proposed system provides highly accurate classification results under the real-time constraint of application.
更多查看译文
关键词
Real-time Pedestrian Detection,Support Vector Machine,Advanced Driver Assistant System
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn