A Flexible Multi-Species Genome-Wide 60K SNP Chip Developed from Pooled Resequencing of 240 Eucalyptus Tree Genomes Across 12 Species.

New phytologist(2015)

引用 101|浏览9
摘要
Summary We used whole genome resequencing of pooled individuals to develop a high‐density single‐nucleotide polymorphism (SNP) chip for Eucalyptus. Genomes of 240 trees of 12 species were sequenced at 3.5× each, and 46 997 586 raw SNP variants were subject to multivariable filtering metrics toward a multispecies, genome‐wide distributed chip content. Of the 60 904 SNPs on the chip, 59 222 were genotyped and 51 204 were polymorphic across 14 Eucalyptus species, providing a 96% genome‐wide coverage with 1 SNP/12–20 kb, and 47 069 SNPs at ≤ 10 kb from 30 444 of the 33 917 genes in the Eucalyptus genome. Given the EUChip60K multi‐species genotyping flexibility, we show that both the sample size and taxonomic composition of cluster files impact heterozygous call specificity and sensitivity by benchmarking against ‘gold standard’ genotypes derived from deeply sequenced individual tree genomes. Thousands of SNPs were shared across species, likely representing ancient variants arisen before the split of these taxa, hinting to a recent eucalypt radiation. We show that the variable SNP filtering constraints allowed coverage of the entire site frequency spectrum, mitigating SNP ascertainment bias. The EUChip60K represents an outstanding tool with which to address population genomics questions in Eucalyptus and to empower genomic selection, GWAS and the broader study of complex trait variation in eucalypts.
更多
查看译文
关键词
Myrtaceae,pooled resequencing,population structure,single-nucleotide polymorphism (SNP) ascertainment bias,trans-species SNPs
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn