Molecular Cloning of Heat Shock Protein Gene Hsp90 and Effects of Abamectin and Double-Stranded Rna on Its Expression in Panonychus Citri (trombidiformes: Tetranychidae)

˜The œFlorida entomologist(2015)

引用 7|浏览9
摘要
Panonychus citri McGregor (Trombidiformes: Tetranychidae), the widely distributed citrus red mite, has developed resistance to most registered acaricides. Adaptation of arthropods to extreme environmental conditions has been related to increased expression of their heat shock proteins (HSPs). The objectives of this study were to explore the relationship between HSPs and resistance of Panonychus citri to the acaricide abamectin and the adaptation of Panonychus citri to high temperatures. The full-length cDNA of the HSP90 gene was cloned from an abamectin-sensitive strain of Panonychus citri. This gene consisted of 2,495 nucleotides with a complete open reading frame (ORF) of 2,169 nucleotides. This gene encoded a polypeptide of 721 amino acids with a predicted molecular weight of 83.44 kDa, a theoretical isoelectric point of 5.06, a 3' untranslated region (UTR) of 228 bp, and a 5' UTR of 98 bp. The results of real-time PCR analyses indicated that the expression of the HSP90 gene in P. citri was markedly affected by the concentration of abamectin, the duration of exposure to it and the temperature, suggesting that the up-regulation of the HSP90 gene may play an important role in abamectin resistance and adaptation to high temperatures in Panonychus citri. The results of RNA interference experiments indicated that the HSP90 gene from adult female Panonychus citri was sensitive to down-regulation by double-stranded RNA (0.1-0.2 mu g/mu L). This study provides a molecular basis for further analysis of the relationships between the HSP90 gene and the resistance of Panonychus citri to abamectin and to high temperatures.
更多
查看译文
关键词
citrus red mite,abamectin,HSP90,double-stranded RNA,resistance mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn