Learning an Executable Neural Semantic Parser.

Computational Linguistics(2019)

引用 52|浏览318
摘要
This article describes a neural semantic parser that maps natural language utterances onto logical forms that can be executed against a task-specific environment, such as a knowledge base or a database, to produce a response. The parser generates tree-structured logical forms with a transition-based approach, combining a generic tree-generation algorithm with domain-general grammar defined by the logical language. The generation process is modeled by structured recurrent neural networks, which provide a rich encoding of the sentential context and generation history for making predictions. To tackle mismatches between natural language and logical form tokens, various attention mechanisms are explored. Finally, we consider different training settings for the neural semantic parser, including fully supervised training where annotated logical forms are given, weakly supervised training where denotations are provided, and distant supervision where only unlabeled sentences and a knowledge base are available. Experiments across a wide range of data sets demonstrate the effectiveness of our parser.
更多
查看译文
关键词
Semantic Reasoning,Neural Machine Translation,Syntax-based Translation Models,Dependency Parsing,Language Understanding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn