Computational Serendipity and Tensor Product Finite Element Differential Forms
SMAI Journal of Computational Mathematics(2019)
摘要
Many conforming finite elements on squares and cubes are elegantly classified into families by the language of finite element exterior calculus and presented in the Periodic Table of the Finite Elements. Use of these elements varies, based principally on the ease or difficulty in finding a "computational basis" of shape functions for element families. The tensor product family, $Q^-_r\Lambda^k$, is most commonly used because computational basis functions are easy to state and implement. The trimmed and non-trimmed serendipity families, $S^-_r\Lambda^k$ and $S_r\Lambda^k$ respectively, are used less frequently because they are newer to the community and, until now, lacked a straightforward technique for computational basis construction. This represents a missed opportunity for computational efficiency as the serendipity elements in general have fewer degrees of freedom than elements of equivalent accuracy from the tensor product family. Accordingly, in pursuit of easy adoption of the serendipity families, we present complete lists of computational bases for both serendipity families, for any order $r\geq 1$ and for any differential form order $0\leq k\leq n$, for problems in dimension $n=2$ or $3$. The bases are defined via shared subspace structures, allowing easy comparison of elements across families. We use and include code in SageMath to find, list, and verify these computational basis functions.
更多查看译文
关键词
Finite Element Methods
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn