Study on Discrimination of Alzheimer's Disease States Using an Ensemble Neural Network's Model.

Medical Imaging 2019 Computer-Aided Diagnosis(2019)

引用 1|浏览8
摘要
Alzheimer’s Disease (AD) is an irreversible disease that gradually worsens with time. Therefore, early diagnosis of Alzheimer’s disease is important to prevent brain tissue damage and treat the patient properly. Mild Cognitive Impairment (MCI) is a prodromal stage of AD, which has no harm to the patient’s ability to have functional activities in daily life except a minor cognitive deficiency. Since MCI can be detected at the earliest stage of AD, it is critical to detect patients with MCI to delay the progression of AD. It is possible to distinguish patients with AD, MCI, and Normal Control (NC) from one another by the size of brain volume, hippocampus and patient’s clinical information. The brain and hippocampus gradually shrink in size and shape as AD develops. In this study, we propose a deep learning-based technique to classify patients with AD, MCI and NC by brain Magnetic Resonance (MR) images. Deep learning has shown human-level performance in a lot of studies including medical image analysis with constrained amount of training data. We propose a deep learning-based ensemble model which consists of 3 Convolutional Neural Networks (CNN) [1] with Network In Network (NIN) [2] architecture. The kernel size is 3x3 convolution followed by 1x1 convolution to reduce the number of trainable parameters and extract features for classification better. In addition, Global Averaging Pooling (GAP) is used instead of Fully-Connected (FC) layers to avoid overfitting by reducing the number of trainable parameters. By using the ensemble model, this shows the 81.66% in classifying 3 classes.
更多
查看译文
关键词
Alzheimer's Disease,Alzheimer's Disease Classification,AD MCI and NC Classification,Deep-learning Ensemble Classification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn