Salvianolic Acid B Combined with Mesenchymal Stem Cells Contributes to Nucleus Pulposus Regeneration.
Connective Tissue Research(2019)
摘要
PURPOSE:To investigate whether salvianolic acid B is able to enhance repair of degenerated intervertebral discs by mesenchymal stem cells (MSCs) through the promotion of MSC differentiation into nucleus pulposus cells in a nucleus-pulposus-like environment and by enhancing the trophic effect of MSCs on residual nucleus pulposus cells (mediated by transforming growth factor-β1).MATERIALS AND METHODS:Successful intervertebral disc degeneration models, established by aspiration of the nucleus pulposus in New Zealand white rabbits, were randomly divided into eight groups: Group A was treated with MSC transplantation. Group B was treated with MSC transplantation and salvianolic acid B, with the subgroups B1, B2, B3, and B4 receiving 0.01 mg/L, 0.1 mg/L, 1 mg/L, and 10 mg/L salvianolic acid B, respectively. Groups C and D were treated with phosphate buffer saline and sham graft, respectively. Group E was the normal control group. At the end of week 8, the type II collagen, proteoglycan, transforming growth factor-β1, and water contents in each group were examined by semi-quantitative immunohistochemistry, spectrophotometry, enzyme-linked immunosorbent assay, and magnetic resonance, respectively.RESULTS:The content of type II collagen, proteoglycan, transforming growth factor-β1, and water in groups B3 and B4 were significantly higher than those in group A (p < 0.01).CONCLUSIONS:Salvianolic acid B (1 mg/L to 10 mg/L) plus MSC transplantation was more effective in repairing degenerated intervertebral discs than was stem cell transplantation alone.
更多查看译文
关键词
Salvianolic acid,stem cell transplantation,nucleus pulposus regeneration,type II collagen,proteoglycan
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn