dMazeRunner: Executing Perfectly Nested Loops on Dataflow Accelerators
ACM Transactions on Embedded Computing Systems (TECS)(2019)
摘要
Dataflow accelerators feature simplicity, programmability, and energy-efficiency and are visualized as a promising architecture for accelerating perfectly nested loops that dominate several important applications, including image and media processing and deep learning. Although numerous accelerator designs are being proposed, how to discover the most efficient way to execute the perfectly nested loop of an application onto computational and memory resources of a given dataflow accelerator (execution method) remains an essential and yet unsolved challenge. In this paper, we propose dMazeRunner -- to efficiently and accurately explore the vast space of the different ways to spatiotemporally execute a perfectly nested loop on dataflow accelerators (execution methods). The novelty of dMazeRunner framework is in: i) a holistic representation of the loop nests, that can succinctly capture the various execution methods, ii) accurate energy and performance models that explicitly capture the computation and communication patterns, data movement, and data buffering of the different execution methods, and iii) drastic pruning of the vast search space by discarding invalid solutions and the solutions that lead to the same cost. Our experiments on various convolution layers (perfectly nested loops) of popular deep learning applications demonstrate that the solutions discovered by dMazeRunner are on average 9.16× better in Energy-Delay-Product (EDP) and 5.83× better in execution time, as compared to prior approaches. With additional pruning heuristics, dMazeRunner reduces the search time from days to seconds with a mere 2.56% increase in EDP, as compared to the optimal solution.
更多查看译文
关键词
Coarse-grained reconfigurable array, analytical model, dataflow, deep neural networks, design space exploration, energy-efficiency, loop optimization, mapping, systolic arrays
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn