Corn Plant Counting Using Deep Learning and UAV Images

IEEE Geoscience and Remote Sensing Letters(2019)

引用 81|浏览46
摘要
The adoption of new technologies, such as unmanned aerial vehicles (UAVs), image processing, and machine learning, is disrupting traditional concepts in agriculture, with a new range of possibilities opening in its fields of research. Plant density is one of the most important corn (Zea mays L.) yield factors, yet its precise measurement after the emergence of plants is impractical in large-scale production fields due to the amount of labor required. This letter aims to develop techniques that enable corn plant counting and the automation of this process through deep learning and computational vision, using images of several corn crops obtained using a low-cost unmanned aerial vehicle (UAV) platform assembled with an RGB sensor.
更多
查看译文
关键词
Deep learning (DL),plant counting,precision agriculture.
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn