Nonstandard Finite Element De Rham Complexes on Cubical Meshes

BIT Numerical Mathematics(2020)

引用 6|浏览24
摘要
Two general operations are proposed on finite element differential complexes on cubical meshes that can be used to construct and analyze sequences of “nonstandard” convergent methods. The first operation, called DoF-transfer, moves edge degrees of freedom to vertices in a way that reduces global degrees of freedom while increasing continuity order at vertices. The second operation, called serendipity, eliminates interior bubble functions and degrees of freedom locally on each element without affecting edge degrees of freedom. These operations can be used independently or in tandem to create nonstandard complexes that incorporate Hermite, Adini and “trimmed-Adini” elements. The resulting elements lead to convergent non-conforming methods for problems requiring stronger regularity and satisfy a discrete Korn inequality. Potential benefits of applying these elements to Stokes, biharmonic and elasticity problems are discussed.
更多
查看译文
关键词
Finite element,Nonconforming element,de Rham complex,65N30,65J05,41A15
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn