MicroRNA-21 Suppresses Ox-Ldl-induced Human Aortic Endothelial Cells Injuries in Atherosclerosis Through Enhancement of Autophagic Flux: Involvement in Promotion of Lysosomal Function
Experimental Cell Research(2017)
摘要
Atherosclerosis is a common pathological basis of cardiovascular disease and remains the leading cause of mortality. Endothelial cell (EC) injury and autophagy dysfunction have been proved to contribute to the development of atherosclerosis. Recently, accumulating evidence confirms that microRNAs (miRNAs) have emerged as vital regulators and fine-tuners of various pathophysiological cellular impacts and molecular signaling pathways involved in atherosclerosis. Herein, the objective of the present study was to explore the biological function of miR-21 in oxidized low-density lipoprotein (ox-LDL)-induced human aortic endothelial cells (HAECs) injury and the underlying molecular mechanism. The results showed that ox-LDL treatment significantly decreased HAECs viability, increased caspase-3 activity, apoptosis ratio and Bax protein expression, and reduced Bcl-2 protein expression resulting in EC injuries. Simultaneously, ox-LDL treatment obviously reduced miR-21 level in a time-and dose-dependent manner. Notably, ox-LDL-induced EC injuries were abolished by miR-21 mimics transfection. In addition, miR-21 mimics alleviated ox-LDL-induced impaired autophagic flux as illustrated by the increases in LC3-II/LC3-I ratio and Beclin-1 protein expression, and the decrease in p62 protein expression in HAECs. Moreover, ox-LDL suppressed the expressions of lysosomal membrane protein (LAMP1) and cathepsin D proteins, and attenuated cathepsin D activity in HAECs, leading to lysosomal dysfunction, while these effects were also blocked by miR-21 mimics. These findings indicated that miR-21 restored impaired autophagic flux and lysosomal dysfunction, thereby attenuating ox-LDL-induced HAECs injuries.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn