Temporal expression profiling of DAMPs-related genes revealed the biphasic post-ischemic inflammation in the experimental stroke model
Molecular Brain(2020)
摘要
The neuroinflammation in the ischemic brain could occur as sterile inflammation in response to damage-associated molecular patterns (DAMPs). However, its long-term dynamic transcriptional changes remain poorly understood. It is also unknown whether this neuroinflammation contributes to the recovery or just deteriorates the outcome. The purpose of this study is to characterize the temporal transcriptional changes in the post-stroke brain focusing on DAMPs-related genes by RNA-sequencing during the period of 28 days. We conducted the RNA-sequencing on day 1, 3, 7, 14, 28 post-stroke in the mouse photothrombosis model. The gross morphological observation showed the ischemic lesion on the ipsilateral cortex turned into a scar with the clearance of cellular debris by day 28. The transcriptome analyses indicated that post-stroke period of 28 days was classified into four categories (I Baseline, II Acute, III Sub-acute-#1, IV Sub-acute-#2 phase). During this period, the well-known genes for DAMPs, receptors, downstream cascades, pro-inflammatory cytokines, and phagocytosis were transcriptionally increased. The gene ontology (GO) analysis of biological process indicated that differentially expressed genes (DEGs) are genetically programmed to achieve immune and inflammatory pathways. Interestingly, we found the biphasic induction of various genes, including DAMPs and pro-inflammatory factors, peaking at acute and sub-acute phases. At the sub-acute phase, we also observed the induction of genes for phagocytosis as well as regulatory and growth factors. Further, we found the activation of CREB (cAMP-response element binding protein), one of the key players for neuronal plasticity, in peri-ischemic neurons by immunohistochemistry at this phase. Taken together, these findings raise the possibility the recurrent inflammation occurs at the sub-acute phase in the post-stroke brain, which could be involved in the debris clearance as well as neural reorganization.
更多查看译文
关键词
Ischemic stroke, DAMPs, Sterile neuroinflammation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn