Transnitrosylation Mediated by the Non-canonical Catalase ROG1 Regulates Nitric Oxide Signaling in Plants.
Developmental cell(2020)
摘要
The redox-based protein S-nitrosylation is a conserved mechanism modulating nitric oxide (NO) signaling and has been considered mainly as a non-enzymatic reaction. S-nitrosylation is regulated by the intracellular NO level that is tightly controlled by S-nitrosoglutathione reductase (GSNOR). However, the molecular mechanisms regulating S-nitrosylation selectivity remain elusive. Here, we characterize an Arabidopsis "repressor of" gsnor1 (rog1) mutation that specifically suppresses the gsnor1 mutant phenotype. ROG1, identical to the non-canonical catalase, CAT3, is a transnitrosylase that specifically modifies GSNOR1 at Cys-10. The transnitrosylase activity of ROG1 is regulated by a unique and highly conserved Cys-343 residue. A ROG1C343T mutant displays increased catalase but decreased transnitrosylase activities. Consistent with these results, the rog1 mutation compromises responses to NO under both normal and stress conditions. We propose that ROG1 functions as a transnitrosylase to regulate the NO-based redox signaling in plants.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn