Learning to Search Efficient DenseNet with Layer-wise Pruning
IEEE International Joint Conference on Neural Network(2020)
摘要
Deep neural networks have achieved outstanding performance in many real-world applications with the expense of huge computational resources. The DenseNet, one of the recently proposed neural network architecture, has achieved the state-of-the-art performance in many visual tasks. However, it has great redundancy due to the dense connections of the internal structure, which leads to high computational costs in inference with such dense networks. To address this issue, we design a reinforcement learning framework to search for efficient DenseNet architectures with layer-wise pruning (LWP) for different tasks, while retaining the original advantages of DenseNet, such as feature reuse, short paths, etc. In this framework, an agent evaluates the importance of each connection between any two block layers, and prunes the redundant connections. In addition, a novel reward-shaping trick is introduced to make DenseNet reach a better trade-off between accuracy and float point operations (FLOPs). Our experiments show that DenseNet with LWP is more compact and efficient than existing alternatives.
更多查看译文
关键词
DenseNet,Reinforcement learning,Compact neural network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn