Spatial Frequency Bias in Convolutional Generative Adversarial Networks

Proceedings of the AAAI Conference on Artificial Intelligence(2022)

引用 31|浏览81
摘要
Understanding the capability of Generative Adversarial Networks (GANs) in learning the full spectrum of spatial frequencies, that is, beyond the low-frequency dominant spectrum of natural images, is critical for assessing the reliability of GAN-generated data in any detail-sensitive application. In this work, we show that the ability of convolutional GANs to learn an image distribution depends on the spatial frequency of the underlying carrier signal, that is, they have a bias against learning high spatial frequencies. Our findings are consistent with the recent observations of high-frequency artifacts in GAN-generated images, but further suggest that such artifacts are the consequence of an underlying bias. We also provide a theoretical explanation for this bias as the manifestation of linear dependencies present in the spectrum of filters of a typical generative Convolutional Neural Network (CNN). Finally, by proposing a proof-of-concept method that can effectively manipulate this bias towards other spatial frequencies, we show that the bias is not fixed and can be exploited to explicitly direct computational resources towards any specific spatial frequency of interest in a dataset, with minimal computational overhead.
更多
查看译文
关键词
Machine Learning (ML),Computer Vision (CV)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn