Nf2 Fine-Tunes Proliferation and Tissue Alignment During Closure of the Optic Fissure in the Embryonic Mouse Eye

Human Molecular Genetics(2020)

引用 2|浏览0
摘要
Uveal coloboma represents one of the most common congenital ocular malformations accounting for up to 10% of childhood blindness (~1 in 5000 live birth). Coloboma originates from defective fusion of the optic fissure (OF), a transient gap that forms during eye morphogenesis by asymmetric, ventral invagination. Genetic heterogeneity combined with the activity of developmentally regulated genes suggests multiple mechanisms regulating OF closure. The tumor suppressor and FERM domain protein Neurofibromin 2 (NF2) controls diverse processes in cancer, development and regeneration, via Hippo pathway and cytoskeleton regulation. In humans, NF2 mutations can cause ocular abnormalities, including coloboma, however, its actual role in OF closure is unknown. Using conditional inactivation in the embryonic mouse eye, our data indicate that loss of Nf2 function results in a novel underlying cause for coloboma. In particular, mutant eyes show substantially increased retinal pigmented epithelium (RPE) proliferation in the fissure region with concomitant acquisition of RPE cell fate. Cells lining the OF margin can maintain RPE fate ectopically and fail to transition from neuroepithelial to cuboidal shape. In the dorsal RPE of the optic cup, Nf2 inactivation leads to a robust increase in cell number, with local disorganization of the cytoskeleton components F-actin and pMLC2. We propose that RPE hyperproliferation is the primary cause for the observed defects causing insufficient alignment of the OF margins in Nf2 mutants and failure to fuse properly, resulting in persistent coloboma. Our findings indicate that limiting proliferation particularly in the RPE layer is a critical mechanism during OF closure.
更多
查看译文
关键词
Ocular Development,Eye Malformations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn