[Characteristics of Organic Matter in Sediments During the Thermal Stratification of a Reservoir and Effects on an Aerobic Denitrifier].
PubMed(2020)
摘要
In this study, the relative molecular weight distribution and fluorescent characteristics of the organic matter in sediments during the thermal stratification of a drinking water reservoir were studied. The nitrogen removal, growth performance, and carbon removal ability of an aerobic denitrifier were investigated when the organic matter in sediments was used as a carbon source. The results found that:① during the stratification period in the drinking water reservoir, the organic matter in sediments has a larger proportion of relative molecular mass>100×103. It can be observed that compared with the relative molecular weight distribution in different months, the percentage of macromolecular organic matter in sediments is the lowest in July (44.62%), showing a characteristic of smaller relative molecular weight; ② the organic matter in sediments of the drinking water reservoir was composed of terrestrial humic-like substance component C1 (250 nm, 425 nm), tryptophan and amino acid-like substances component C2 (230 nm/280 nm, 322 nm), and traditional microbial humic-like substances component C3 (250 nm, 340 nm). Component C2 accounted for a higher percentage, and the organic matter in July showed a higher total fluorescence intensity; ③ during the aerobic denitrification process, organic matter in May displayed better characteristics as an electron donor, while organic matter in July exhibited excellent performance as an energy substance and better denitrification characteristics of the strain WGX-9; ④ the aerobic denitrification performance of the strain WGX-9 can be significantly promoted when the organic matter in sediments is a carbon source, compared with natural organic matter, algae organic matter, and actual water of the drinking water reservoir. This study clarifies the characteristics of the organic matter in sediments during the thermal stratification period of the drinking water reservoir and its effect on an aerobic denitrifier. This will provide a scientific basis for the research of nitrogen pollution control in micro-polluted water sources.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn