A Symmetric Fully Convolutional Residual Network with DCRF for Accurate Tooth Segmentation
IEEE Access(2020)
摘要
Accurate tooth segmentation from CBCT images is a crucial step for specialist to perform quantitative analysis, clinical diagnosis and operation. In this paper, we present a symmetric full convolutional network with residual block and Dense Conditional Random Field (DCRF), which can achieve accurate segmentation automatically for tooth images. The proposed method can not only strengthen feature propagation, but also boost feature reuse, which can be credited to the contracting path and the expanding path that extract and recover pixel cues sufficiently. To this end, we apply special deep bottleneck architectures (DBAs) and summation-based skip connection into our network to ensure accurate segmentation for much deeper neural network. Compared with previous methods which are based on conditional random field for original image intensity, our approach applies DCRF to the posterior probability generated by the proposed network. To avoid the interferences of noises around the tooth, we combine the pixel-level prediction capability of DCRF, which further enhance the segmentation performance. In the experiments, we verify the capabilities of our methods based on four evaluation indicators, which demonstrates the superiority of our method.
更多查看译文
关键词
Tooth segmentation,CBCT images,fully convolutional network,bottleneck architecture,conditional random field
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn