Thermally Triggered, Cell-Specific Enzymatic Glyco-Editing: in Situ Regulation of Lectin Recognition and Immune Response on Target Cells
ACS APPLIED MATERIALS & INTERFACES(2020)
摘要
In situ glyco-editing on the cell surface can endow cellular glycoforms with new structures and properties; however, the lack of cell specificity and dependence on cells' endogenous functions plague the revelation of cellular glycan recognition properties and hamper the application of glyco-editing in complicated authentic biosystems. Herein, we develop a thermally triggered, cell-specific glyco-editing method for regulation of lectin recognition on target live cells in both single- and cocultured settings. The method relies on the aptamer-mediated anchoring of microgel-encapsulated neuraminidase on target cells and subsequent thermally triggered enzyme release for localized sialic acid (Sia) trimming. This temperature-based enzyme accessibility modulation strategy exempts genetic or metabolic engineering operations and, thus for the first time, enables tumor-specific desialylation on complicated tissue slices. The proposed method also provides an unprecedented opportunity to potentiate the innate immune response of natural killer cells toward target tumor cells through thermally triggered cell-specific desialylation, which paves the way for in vivo glycoimmune-checkpoint-targeted cancer therapeutic intervention.
更多查看译文
关键词
aptamer,cell-specific,glyco-editing,lectin recognition,microgel,thermally triggered
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn