Asymmetric Gaussian Process Multi-View Learning for Visual Classification.
Information fusion(2021)
摘要
Methods of multi-view learning attain outstanding performance in different fields compared with the single-view based strategies. In this paper, the Gaussian Process Latent Variable Model (GPVLM), which is a generative and non-parametric model, is exploited to represent multiple views in a common subspace. Specifically, there exists a shared latent variable across various views that is assumed to be transformed to observations by using distinctive Gaussian Process projections. However, this assumption is only a generative strategy, being intractable to simply estimate the fused variable at the testing step. In order to tackle this problem, another projection from observed data to the shared variable is simultaneously learned by enjoying the view-shared and view-specific kernel parameters under the Gaussian Process structure. Furthermore, to achieve the classification task, label information is also introduced to be the generation from the latent variable through a Gaussian Process transformation. Extensive experimental results on multi-view datasets demonstrate the superiority and effectiveness of our model in comparison to state-of-the-art algorithms.
更多查看译文
关键词
Multi-view,Gaussian Process,View-shared,View-specific,Classification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn