Noise Optimization in Artificial Neural Networks.
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING(2024)
摘要
Artificial neural network (ANN) has been widely used in automation. However, the vulnerability of ANN under certain attacks poses security threat for critical automation systems. Adding noises to artificial neural network has been shown to be able to improve robustness in previous work. In this work, we propose a new technique to compute the pathwise stochastic gradient estimate with respect to the standard deviation of the Gaussian noise added to each neuron of the ANN. By our proposed technique, the gradient estimation with respect to noise levels is a byproduct of the back propagation algorithm for estimating gradient with respect to synaptic weights in ANN. Thus, the noise level for each neuron can be optimized simultaneously in the processing of training the synaptic weights at nearly no extra computational cost. In numerical experiments, our proposed method can achieve significant performance improvement on robustness of several popular ANN structures under both black box and white box attacks.
更多查看译文
关键词
Artificial neural network,pathwise stochastic gradient,robustness
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn