Coverage As a Principle for Discovering Transferable Behavior in Reinforcement Learning.

CoRR(2021)

引用 0|浏览114
摘要
Designing agents that acquire knowledge autonomously and use it to solve new tasks efficiently is an important challenge in reinforcement learning. Knowledge acquired during an unsupervised pre-training phase is often transferred by fine-tuning neural network weights once rewards are exposed, as is common practice in supervised domains. Given the nature of the reinforcement learning problem, we argue that standard fine-tuning strategies alone are not enough for efficient transfer in challenging domains. We introduce Behavior Transfer (BT), a technique that leverages pre-trained policies for exploration and that is complementary to transferring neural network weights. Our experiments show that, when combined with large-scale pre-training in the absence of rewards, existing intrinsic motivation objectives can lead to the emergence of complex behaviors. These pre-trained policies can then be leveraged by BT to discover better solutions than without pre-training, and combining BT with standard fine-tuning strategies results in additional benefits. The largest gains are generally observed in domains requiring structured exploration, including settings where the behavior of the pre-trained policies is misaligned with the downstream task.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn