Weak Magnetic Fields Enhance the Efficacy of Radiation Therapy

Advances in Radiation Oncology(2021)

引用 1|浏览15
摘要
Purpose: The clinical efficacy of radiation therapy is mechanistically linked to ionization-induced free radicals that cause cell and tissue injury through direct and indirect mechanisms. Free radical reaction dynamics are influenced by many factors and can be manipulated by static weak magnetic fields (WMF) that perturb singlet-triplet state interconversion. Our study exploits this phenomenon to directly increase ionizing radiation (IR) dose absorption in tumors by combining WMF with radiation therapy as a new and effective method to improve treatment. Methods and Materials: Coils were custom made to produce both homogeneous and gradient magnetic fields. The gradient coil enabled simultaneous in vitro assessment of free radical/reactive oxygen species reactivity across multiple field strengths from 6 to 66 G. First, increases in IR-induced free radical concentrations using oxidant-sensitive fluorescent dyes in a cell-free system were measured and verified. Next, human and murine cancer cell lines were evaluated in in vitro and in vivo models after exposure to clinically relevant doses of IR in combination with WMF. Results: Cellular responses to IR and WMF were field strength and cell line dependent. WMF was able to enhance IR effects on reactive oxygen species formation, DNA double-strand break formation, cell death, and tumor growth. Conclusions: We demonstrate that the external presence of a magnetic field enhances radiation-induced cancer cell injury and death in vitro and in vivo. The effect extends beyond the timeframe when free radicals are induced in the presence of radiation into the window when endogenous free radicals are produced and therefore extends the applicability of this novel adjunct to cancer therapy in the context of radiation treatment. (C)2021 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn