Early Postnatal Allergic Airway Inflammation Induces Dystrophic Microglia Leading to Excitatory Postsynaptic Surplus and Autism-Like Behavior

BRAIN BEHAVIOR AND IMMUNITY(2021)

引用 20|浏览34
摘要
Microglia play key roles in synaptic pruning, which primarily occurs from the postnatal period to adolescence. Synaptic pruning is essential for normal brain development and its impairment is implicated in neuropsychiatric developmental diseases such as autism spectrum disorders (ASD). Recent epidemiological surveys reported a strong link between ASD and atopic/allergic diseases. However, few studies have experimentally investigated the relationship between allergy and ASD-like manifestations, particularly in the early postnatal period, when allergic disorders occur frequently. Therefore, we aimed to characterize how allergic inflammation in the early postnatal period influences microglia and behavior using mouse models of short- and long-term airway allergy. Male mice were immunized by an intraperitoneal injection of aluminum hydroxide and ovalbumin (OVA) or phosphate-buffered saline (control) on postnatal days (P) 3, 7, and 11, followed by intranasal challenge with OVA or phosphate-buffered saline solution twice a week until P30 or P70. In the hippocampus, Iba-1-positive areas, the size of Iba-1-positive microglial cell bodies, and the ramification index of microglia by Sholl analysis were significantly smaller in the OVA group than in the control group on P30 and P70, although Iba-1-positive microglia numbers did not differ significantly between the two groups. In Iba-1-positive cells, postsynaptic density protein 95 (PSD95)-occupied areas and CD68-occupied areas were significantly decreased on P30 and P70, respectively, in the OVA group compared with the control group. Immunoblotting using hippocampal tissues demonstrated that amounts of PSD95, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor 2, and N-methyl-D-aspartate (NMDA) receptor 2B were significantly increased in the OVA group compared with the control group on P70, and a similar increasing trend for PSD95 was observed on P30. Neurogenesis was not significantly different between the two groups on P30 or P70 by doublecortin immunohistochemistry. The social preference index was significantly lower in the three chamber test and the number of buried marbles was significantly higher in the OVA group than in the control group on P70 but not on P30, whereas locomotion and anxiety were not different between the two groups. Compared with the control group, serum basal corticosterone levels were significantly elevated and hippocampal glucocorticoid receptor (GR) amounts and nuclear GR translocation in microglia, but not in neurons or astrocytes, were significantly decreased in the OVA group on P70 but not on P30. Gene set enrichment analysis of isolated microglia revealed that genes related to immune responses including Toll-like receptor signaling and chemokine signaling pathways, senescence, and glucocorticoid signaling were significantly upregulated in the OVA group compared with the control group on P30 and P70. These findings suggest that early postnatal allergic airway inflammation induces dystrophic microglia that exhibit defective synaptic pruning upon short- and long-term allergen exposure. Furthermore, long-term allergen exposure induced excitatory postsynaptic surplus and ASD-like behavior. Hypothalamo-pituitary-adrenal axis activation and the compensatory downregulation of microglial GR during long-term allergic airway inflammation may also facilitate these changes.
更多
查看译文
关键词
Microglia,Allergic airway inflammation,Early postnatal period,Synaptic pruning,Dystrophic change,Transcriptome analysis,Glucocorticoid signal,Autism spectrum disorders
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn