A Pilot Study on Automatic Three-Dimensional Quantification of Barrett's Esophagus for Risk Stratification and Therapy Monitoring

GASTROENTEROLOGY(2021)

引用 20|浏览13
摘要
BACKGROUND & AIMS: Barrett's epithelium measurement using widely accepted Prague C&M classification is highly operator dependent. We propose a novel methodology for measuring this risk score automatically. The method also enables quantification of the area of Barrett's epithelium (BEA) and islands, which was not possible before. Furthermore, it allows 3-dimensional (3D) reconstruction of the esophageal surface, enabling interactive 3D visualization. We aimed to assess the accuracy of the proposed artificial intelligence system on both phantom and endoscopic patient data. METHODS: Using advanced deep learning, a depth estimator network is used to predict endoscope camera distance from the gastric folds. By segmenting BEA and gastroesophageal junction and projecting them to the estimated mm distances, we measure C&M scores including the BEA. The derived endoscopy artificial intelligence system was tested on a purpose-built 3D printed esophagus phantom with varying BEAs and on 194 high-definition videos from 131 patients with C&M values scored by expert endoscopists. RESULTS: Endoscopic phantom video data demonstrated a 97.2% accuracy with a marginal +/- 0.9 mm average deviation for C&M and island measurements, while for BEA we achieved 98.4% accuracy with only +/- 0.4 cm(2) average deviation compared with ground-truth. On patient data, the C&M measurements provided by our system concurred with expert scores with marginal overall relative error (mean difference) of 8% (3.6 mm) and 7% (2.8 mm) for C and M scores, respectively. CONCLUSIONS: The proposed methodology automatically extracts Prague C&M scores with high accuracy. Quantification and 3D reconstruction of the entire Barrett's area provides new opportunities for risk stratification and assessment of therapy response.
更多
查看译文
关键词
Imaging,Deep learning,Three-dimensional,Risk assessment,Esophageal cancer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn