Convolutional Sparse Coding Fast Approximation with Application to Seismic Reflectivity Estimation
IEEE Transactions on Geoscience and Remote Sensing(2021)
摘要
In sparse coding, we attempt to extract features of input vectors, assuming that the data is inherently structured as a sparse superposition of basic building blocks. Similarly, neural networks perform a given task by learning features of the training dataset. Recently, both data- and model-driven feature extracting methods have become extremely popular and have achieved remarkable results. Nevertheless, practical implementations are often too slow to be employed in real-life scenarios, especially for real-time applications. We propose a speed-up upgraded version of the classic iterative thresholding algorithm (ITA), which produces a good approximation of the convolutional sparse code (CSC) within 2–5 iterations. The speed advantage is gained mostly from the observation that most solvers are slowed down by inefficient global thresholding. The main idea is to normalize each data point by the local receptive field energy, before applying a threshold. This way, the natural inclination toward strong feature expressions is suppressed, so that one can rely on a global threshold that can be easily approximated, or learned during training. The proposed algorithm can be employed with a known predetermined dictionary, or with a trained dictionary. The trained version is implemented as a neural net designed as the unfolding of the proposed solver. The performance of the proposed solution is demonstrated via the seismic inversion problem in both synthetic and real data scenarios. We also provide theoretical guarantees for a stable support recovery, namely we prove that under certain conditions, the true support is perfectly recovered within the first iteration.
更多查看译文
关键词
Dictionaries,Feature extraction,Encoding,Convolution,Coherence,Approximation algorithms,Image coding,Convolutional neural network (CNN),convolutional sparse coding (CSC),deep learning,seismic inversion,sparse reflectivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn