Case Study: Runtime Safety Verification of Neural Network Controlled System
International Conference on Runtime Verification(2024)
摘要
Neural networks are increasingly used in safety-critical applications such as robotics and autonomous vehicles. However, the deployment of neural-network-controlled systems (NNCSs) raises significant safety concerns. Many recent advances overlook critical aspects of verifying control and ensuring safety in real-time scenarios. This paper presents a case study on using POLAR-Express, a state-of-the-art NNCS reachability analysis tool, for runtime safety verification in a Turtlebot navigation system using LiDAR. The Turtlebot, equipped with a neural network controller for steering, operates in a complex environment with obstacles. We developed a safe online controller switching strategy that switches between the original NNCS controller and an obstacle avoidance controller based on the verification results. Our experiments, conducted in a ROS2 Flatland simulation environment, explore the capabilities and limitations of using POLAR-Express for runtime verification and demonstrate the effectiveness of our switching strategy.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn