Artificial Neural Network Trained on Smartphone Behavior Can Trace Epileptiform Activity in Epilepsy.
iScience(2021)
摘要
A range of abnormal electrical activity patterns termed epileptiform discharges can occur in the brains of persons with epilepsy. These epileptiform discharges can be monitored and recorded with implanted devices that deliver therapeutic neurostimulation. These continuous recordings provide an opportunity to study the behavioral correlates of epileptiform discharges as the patients go about their daily lives. Here, we captured the smartphone touchscreen interactions in eight patients in conjunction with electrographic recordings (accumulating 35,714 h) and by using an artificial neural network model addressed if the behavior reflected the epileptiform discharges. The personalized model outputs based on smartphone behavioral inputs corresponded well with the observed electrographic data (R: 0.2-0.6, median 0.4). The realistic reconstructions of epileptiform activity based on smartphone use demonstrate how day-to-day digital behavior may be converted to personalized markers of disease activity in epilepsy.
更多查看译文
关键词
Behavioral neuroscience,Bioengineering,Neural networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn