Aptamer-Based Solution-Gated Graphene Transistors for Highly Sensitive and Real-Time Detection of Thrombin Molecules.

Analytical chemistry(2021)

引用 17|浏览31
摘要
Thrombin is an important biomarker for various diseases and biochemical reactions. Rapid and real-time detection of thrombin that quickly neutralizes in early coagulation in the body has gained significant attention for its practical applications. Solution-gated graphene transistors (SGGTs) have been widely studied due to their higher sensitivity and low-cost fabrication for chemical and biological sensing applications. In this paper, the ssDNA aptamer with 29 bases was immobilized on the surface of the gate electrode to specifically recognize thrombin. The SGGT sensor achieved high sensitivity with a limit of detection (LOD) up to fM. The LOD was attributed to the amplification function of SGGTs and the suitable aptamer choice. The ssDNA configuration folding induced by thrombin molecules and the electropositivity of thrombin molecules could arouse the same electrical response of SGGTs, helping the device obtain a high sensitivity. The channel current variation of sensors had a good linear relationship with the logarithm of thrombin concentration in the range of 1 fM to 10 nM. The fabricated device also demonstrated a short response time to thrombin molecules, and the response time to the 1 fM thrombin molecules was about 150 s. In summary, the sensing strategy of aptamer-based SGGTs with high sensitivity and high selectivity has a good prospect in medical diagnosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn