Hepatic CPT1A Facilitates Liver-Adipose Cross-Talk Via Induction of FGF21 in Mice.
Diabetes(2021)
摘要
Background & Aims Hepatosteatosis, defined as excessive intrahepatic lipid accumulation, represents the first step of NAFLD. When combined with additional cellular stress, this benign status progresses to local and systemic pathological conditions such as NASH and insulin resistance. However, the molecular events directly caused by hepatic lipid build-up, in terms of its impact on liver biology and other peripheral organs, remain unclear. Carnitine palmitoyltransferase 1A (CPT1A) is the rate limiting enzyme for long chain fatty acid beta-oxidation in the liver. Here we utilise hepatocyte-specific Cpt1a knockout (LKO) mice to investigate the physiological consequences of abolishing hepatic long chain fatty acid metabolism. Approach & Results Compared to the wild-type (WT) littermates, high fat diet (HFD)-fed LKO mice displayed more severe hepatosteatosis but were otherwise protected against diet-induced weight gain, insulin resistance, hepatic ER stress, inflammation and damage. Interestingly, increased energy expenditure was observed in LKO mice, accompanied by enhanced adipose tissue browning. RNAseq analysis revealed that the peroxisome proliferator activator alpha (PPARα)- fibroblast growth factor 21 (FGF21) axis was activated in liver of LKO mice. Importantly, antibody-mediated neutralization of FGF21 abolished the healthier metabolic phenotype and adipose browning in LKO mice, indicating that the elevation of FGF21 contributes to the improved liver pathology and adipose browning in HFD-treated LKO mice. Conclusions Liver with deficient CPT1A expression adopts a healthy steatotic status that protects against HFD-evoked liver damage and potentiates adipose browning in an FGF21-dependent manner. Inhibition of hepatic CPT1A may serve as a viable strategy for the treatment of obesity and NAFLD.
更多查看译文
关键词
Metabolism,Hepatic Steatosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn