Non-negative Independent Factor Analysis Disentangles Discrete and Continuous Sources of Variation in Scrna-Seq Data

BIOINFORMATICS(2022)

引用 0|浏览2
摘要
Motivation: Single-cell RNA-seq analysis has emerged as a powerful tool for understanding inter-cellular heterogeneity. Due to the inherent noise of the data, computational techniques often rely on dimensionality reduction (DR) as both a pre-processing step and an analysis tool. Ideally, DR should preserve the biological information while discarding the noise. However, if the DR is to be used directly to gain biological insight it must also be interpretable-that is the individual dimensions of the reduction should correspond to specific biological variables such as cell-type identity or pathway activity. Maximizing biological interpretability necessitates making assumption about the data structures and the choice of the model is critical. Results: We present a new probabilistic single-cell factor analysis model, Non-negative Independent Factor Analysis (NIFA), that incorporates different interpretability inducing assumptions into a single modeling framework. The key advantage of our NIFA model is that it simultaneously models uni- and multi-modal latent factors, and thus isolates discrete cell-type identity and continuous pathway activity into separate components. We apply our approach to a range of datasets where cell-type identity is known, and we show that NIFA-derived factors outperform results from ICA, PCA, NMF and scCoGAPS (an NMF method designed for single-cell data) in terms of disentangling biological sources of variation. Studying an immunotherapy dataset in detail, we show that NIFA is able to reproduce and refine previous findings in a single analysis framework and enables the discovery of new clinically relevant cell states.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn