Altered Metabolome and Microbiome Features Provide Clues in Understanding Irritable Bowel Syndrome and Depression Comorbidity.
The ISME Journal(2021)
摘要
Irritable bowel syndrome (IBS) is one of the functional gastrointestinal disorders characterized by chronic and/or recurrent symptoms of abdominal pain and irregular defecation. Changed gut microbiota has been proposed to mediate IBS; however, contradictory results exist, and IBS-specific microbiota, metabolites, and their interactions remain poorly understood. To address this issue, we performed metabolomic and metagenomic profiling of stool and serum samples based on discovery ( n = 330) and validation ( n = 101) cohorts. Fecal metagenomic data showed moderate dysbiosis compared with other diseases, in contrast, serum metabolites showed significant differences with greater power to distinguish IBS patients from healthy controls. Specifically, 726 differentially abundant serum metabolites were identified, including a cluster of fatty acyl-CoAs enriched in IBS. We further identified 522 robust associations between differentially abundant gut bacteria and fecal metabolites, of which three species including Odoribacter splanchnicus , Escherichia coli , and Ruminococcus gnavus were strongly associated with the low abundance of dihydropteroic acid. Moreover, dysregulated tryptophan/serotonin metabolism was found to be correlated with the severity of IBS depression in both fecal and serum metabolomes, characterized by a shift in tryptophan metabolism towards kynurenine production. Collectively, our study revealed serum/fecal metabolome alterations and their relationship with gut microbiome, highlighted the massive alterations of serum metabolites, which empower to recognize IBS patients, suggested potential roles of metabolic dysregulation in IBS pathogenesis, and offered new clues to understand IBS depression comorbidity. Our study provided a valuable resource for future studies, and would facilitate potential clinical applications of IBS featured microbiota and/or metabolites.
更多查看译文
关键词
Clinical microbiology,Colitis,Metagenomics,Life Sciences,general,Microbiology,Ecology,Evolutionary Biology,Microbial Genetics and Genomics,Microbial Ecology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn