Focal Adhesion Kinase-Yap Signaling Axis Drives Drug-Tolerant Persister Cells and Residual Disease in Lung Cancer

NATURE COMMUNICATIONS(2024)

引用 5|浏览65
摘要
Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response. Remaining drug-tolerant persistent (DTP) cancer cells limit the efficacy of targeted therapy in EGFR, ALK and KRAS mutant non-small cell lung cancer (NSCLC). Here, the authors show that focal adhesion kinase (FAK)-YAP signalling supports DTP cells promoting residual disease and targeting this pathway improved tumour response in NSCLC preclinical models.
更多
查看译文
关键词
Cancer,tissue growth control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn