Bisphenol A Promotes Autophagy in Ovarian Granulosa Cells by Inducing AMPK/mTOR/ULK1 Signalling Pathway
ENVIRONMENT INTERNATIONAL(2021)
摘要
Background: Bisphenol A (BPA) is a widespread endocrine-disrupting chemical with estrogen like effects, which could interfere with the human reproductive system by disrupting the normal function of granulosa cells (GCs) leading to abnormal ovarian function. However, the mechanism of its toxicity on human GCs has not been clearly described thus far. Methods: 106 normogonadotropic infertile women undergoing their first in-vitro fertilization-embryo transfer (IVF-ET) cycle were recruited. Urinary BPA level and the early outcomes of IVF-ET were analysed. Patients were divided to low and high BPA exposure groups using the median urinary BPA concentration as the cut-off value. In-vivo and in-vitro studies were conducted using mice and human granulosa cell line (KGN cells). Female Kunming mice approximately 6-8 weeks of age were poisoned with BPA at different dosages (1, 10 or 100 mu g/kg) by oral gavage once daily for 2 weeks, while KGN cells were exposed to BPA at the concentration of 1, 10 or 100 nM for 24 h, 48 h or 72 h. BPA-induced ovarian morphologic changes were analysed by histopathology investigation. Cell viability and apoptosis were evaluated using CCK-8, TUNEL and flowcytometric, respectively. Hormone levels were determined using ELISA and the molecular mechanism studies were conducted using immunofluorescence, RT-PCR and western blots. Results: The oocyte retrieval rate, maturation rate and embryo implantation rate significantly decreased with the higher level of urinary BPA concentration. Peak E2 level was lower in high BPA group, but no statistical significance could be observed. In BPA treated mice, cystic dilation of the follicles with a decreased number of GCs could be observed histopathologically. Decreased E2, P4 and AMH level and GCs autophagy could be detected both in-vivo and in-vitro with the activation of AMPK/mTOR/ULK1 signalling pathway. As being confirmed in KGN cells, phosphorylated AMPK and ULK1 increased while phosphorylated mTOR decreased, and by inhibition autophagy using knockdown of AMPK or 3-MA, adverse effects of BPA exposure in-vitro could be reversed. Conclusion: BPA exposure might abnormally influence human ovarian functions leading to abnormal folliculogenesis by activation of autophagy in GCs through AMPK/mTOR/ULK1 pathway.
更多查看译文
关键词
Bisphenol A,Sex hormones,Autophagy,Apoptosis,AMPK
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn