Green synthesis of magnetically recyclable Mn0.6Zn0.4Fe2O4@Zn1-xMnxS composites from spent batteries for visible light photocatalytic degradation of phenol
Chemosphere(2022)
摘要
Magnetic binary heterojunctions are a kind of promising photocatalysts due to their high catalytic activity and easy magnetic separation; however, their synthesis may involve high costs or secondary environmental impacts. In this work, the magnetically recyclable Mn0.6Zn0.4Fe2O4@Zn1-xMnxS (MZFO@Zn1-xMnxS, x = 0.00–0.07) photocatalysts are synthesized from spent batteries via a green biocheaching and egg white-assisted hydrothermal method. The as-synthesized photocatalysts have been comprehensively characterized in phase, morphology, texture, optics, photoelectrochemistry and photocatalytic activity. Characterization results indicate that the desired core-shell structure MZFO@Zn1-xMnxS composites are successfully synthesized, theirs absorption intensity in the visible light region is greatly enhanced compared to Zn1-xMnxS. In addition, doped Mn2+ in ZnS host lattice and the staggered bandgap alignment of MZFO and Zn1-xMnxS greatly enhances electron transfer and charge separation in the binary heterojunction system. The optimized MZFO@Zn0.95Mn0.05S shows the highest photodegradation performance toward phenol under the visible light irradiation, with a complete degradation of 25 mg L−1 of phenol within 120 min, and its reactive kinetic constants is about 5.2 and 13.3 times higher than that of pure Zn0.95Mn0.05S and MZFO, respectively. Furthermore, the mechanism and pathways for the degradation of phenol are proposed. In addition, MZFO@Zn0.95Mn0.05S also exhibits a good reusability and high magnetic separation properties after 5 successive cycles. This new material has the advantages of low costs, simple reuse and great potential in application.
更多查看译文
关键词
Mn-Zn ferrite,Mn doped Zn,Magnetic photocatalyst,Phenol degradation,Photocatalytic activity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn