Scaling Law for Recommendation Models: Towards General-purpose User Representations

THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4(2023)

引用 14|浏览23
摘要
Recent advancement of large-scale pretrained models such as BERT, GPT-3, CLIP, and Gopher, has shown astonishing achievements across various task domains. Unlike vision recognition and language models, studies on general-purpose user representation at scale still remain underexplored. Here we explore the possibility of general-purpose user representation learning by training a universal user encoder at large scales. We demonstrate that the scaling law is present in user representation learning areas, where the training error scales as a power-law with the amount of computation. Our Contrastive Learning User Encoder (CLUE), optimizes task-agnostic objectives, and the resulting user embeddings stretch our expectation of what is possible to do in various downstream tasks. CLUE also shows great transferability to other domains and companies, as performances on an online experiment shows significant improvements in Click-Through-Rate (CTR). Furthermore, we also investigate how the model performance is influenced by the scale factors, such as training data size, model capacity, sequence length, and batch size. Finally, we discuss the broader impacts of CLUE in general.
更多
查看译文
关键词
Representation Learning,User Modeling,Meta-Learning,Transfer Learning,Semi-Supervised Learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn