Dysregulated MDR1 by PRDM1/Blimp1 is Involved in the Doxorubicin Resistance of Non-Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma
Chemotherapy(2021)
摘要
Introduction: The chemoresistance mechanism of diffuse large B-cell lymphoma (DLBCL) is still poorly understood, and patient prognosis remains unsatisfactory. This study aimed to investigate drug resistance mechanisms in non-germinal center B-cell-like (non-GCB) DLBCL. Methods: Doxorubicin (DOX)-resistant OCI-Ly3 cells were generated through long-term incubation of cells in a medium with gradually increasing DOX concentrations. The expression levels of genes related to drug metabolism were determined using a functional gene grouping polymerase chain reaction (PCR) array. Drug-resistant proteins were identified using bioinformatics, and molecular association networks were subsequently generated. The association and mechanism of key genes were determined using a dual-luciferase reporter assay System and chromatin immunoprecipitation (ChIP). The expression of drug-resistant genes and target genes was then measured using Western blotting and immunohistochemistry. The correlation between gene expressions was analyzed using Spearman’s rank correlation coefficient. Results: Using the PCR array, MDR1 was identified as the key gene that regulates DOX resistance in OCI-Ly3/DOX-A100, a non-GCB DLBCL cell line. The dual-luciferase reporter assay system demonstrated that MDR1 transcription could be inhibited by PRDM1. ChIP results showed that PRDM1 had the ability to bind to the promoter region (−1,132 to −996) of MDR1. In OCI-Ly3/DOX cells, NF-κB activity and PRDM1 expression decreased with an increase in drug-resistant index, whereas MDR1 expression increased with enhanced drug resistance. Immunohistochemical analysis revealed that relative MDR1 expression was higher than that of PRDM1 in human DLBCL tissue samples. A negative correlation was observed between MDR1 and PRDM1. Conclusion: In non-GCB DLBCL cells, NF-κB downregulates PRDM1 and thereby promotes MDR1 transcription by terminating PRDM1-induced transcriptional inhibition of MDR1. Such a mechanism may explain the reason for disease recurrence in non-GCB DLBCL after R-CHOP or combined CHOP with bortezomib treatment. Our findings may provide a potential therapeutic strategy for reducing drug resistance in patients with DLBCL.
更多查看译文
关键词
Doxorubicin,Drug resistance,NF-kappa B,Non-Hodgkin's lymphoma,PRDM1 gene
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn