An Ex Vivo Platform to Guide Drug Combination Treatment in Relapsed/refractory Lymphoma

Science Translational Medicine(2022)

引用 6|浏览36
摘要
Although combination therapy is the standard of care for relapsed/refractory non-Hodgkin's lymphoma (RRNHL), combination treatment chosen for an individual patient is empirical, and response rates remain poor in individuals with chemotherapy-resistant disease. Here, we evaluate an experimental-analytic method, quadratic phenotypic optimization platform (QPOP), for prediction of patient-specific drug combination efficacy from a limited quantity of biopsied tumor samples. In this prospective study, we enrolled 71 patients with RR-NHL (39 B cell NHL and 32 NK/T cell NHL) with a median of two prior lines of treatment, at two academic hospitals in Singapore from November 2017 to August 2021. Fresh biopsies underwent ex vivo testing using a panel of 12 drugs with known efficacy against NHL to identify effective single and combination treatments. Individualized QPOP reports were generated for 67 of 75 patient samples, with a median turnaround time of 6 days from sample collection to report generation. Doublet drug combinations containing copanlisib or romidepsin were most effective against B cell NHL and NK/T cell NHL samples, respectively. Off-label QPOP-guided therapy offered at physician discretion in the absence of standard options (n = 17) resulted in five complete responses. Among patients with more than two prior lines of therapy, the rates of progressive disease were lower with QPOP-guided treatments than with conventional chemotherapy. Overall, this study shows that the identification of patient-specific drug combinations through ex vivo analysis was achievable for RR-NHL in a clinically applicable time frame. These data provide the basis for a prospective clinical trial evaluating ex vivo-guided combination therapy in RR-NHL.
更多
查看译文
关键词
Pharmacokinetic/Pharmacodynamic Modeling,Molecular Profiling,Composite Endpoints
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn