A Multiscale Indentation-Based Technique to Correlate Acoustic Emission with Deformation Mechanisms in Complex Alloys

Materials Characterization(2021)

引用 3|浏览8
摘要
Conventional methodologies to link damage evolution with the activation of deformation mechanisms typically require destructive testing and post-mortem analysis. More recently, mechanical testing combined with acoustic emission analysis has provided a method to fingerprint multiple active deformation mechanisms. However, correlating different acoustic emission signals with active deformation sources remains a non-trivial task due to the simultaneous activation of sources during mechanical testing. Here, we demonstrate a multiscale indentation-based technique to isolate dislocation and martensitic transformation sources in the acoustic emission data of a complex alloy. For this purpose, the acoustic emission signals from macro- and microindentation experiments are compared with microscopy and crystallographic analysis of deformed microstructures. A key feature of this method is the selective activation of the martensitic transformation during microindentation, which enables separate fingerprinting of this deformation mechanism. An unsupervised k mean clustering methodology is leveraged to classify acoustic emission waveforms into clusters, which facilitates the detection of shared deformation mechanisms across different tests. The results of this study provide a rapid non-destructive tool to correlate acoustic emission sources with deformation mechanisms in complex alloys.
更多
查看译文
关键词
Martensite,Acoustic emission,High entropy alloy,Indentation,Damage detection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn