Gradient-based Bit Encoding Optimization for Noise-Robust Binary Memristive Crossbar

PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022)(2022)

引用 2|浏览27
摘要
Binary memristive crossbars have gained huge attention as an energy-efficient deep learning hardware accelerator. Nonetheless, they suffer from various noises due to the analog nature of the crossbars. To overcome such limitations, most previous works train weight parameters with noise data obtained from a crossbar. These methods are, however, ineffective because it is difficult to collect noise data in large-volume manufacturing environment where each crossbar has a large device/circuit level variation. Moreover, we argue that there is still room for improvement even though these methods somewhat improve accuracy. This paper explores a new perspective on mitigating crossbar noise in a more generalized way by manipulating input binary bit encoding rather than training the weight of networks with respect to noise data. We first mathematically show that the noise decreases as the number of binary bit encoding pulses increases when representing the same amount of information. In addition, we propose Gradient-based Bit Encoding Optimization (GBO) which optimizes a different number of pulses at each layer, based on our in-depth analysis that each layer has a different level of noise sensitivity. The proposed heterogeneous layer-wise bit encoding scheme achieves high noise robustness with low computational cost. Our experimental results on public benchmark datasets show that GBO improves the classification accuracy by 5-40 in severe noise scenarios.
更多
查看译文
关键词
Memristive crossbar,Binary input encoding,Deep neural network,Binary neural network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn