A Deep Learning Approach To Estimation Using Measurements Received Over a Network

ArXiv(2022)

引用 0|浏览9
摘要
We propose a novel deep neural network (DNN) based approximation architecture to learn estimates of measurements. We detail an algorithm that enables training of the DNN. The DNN estimator only uses measurements, if and when they are received over a communication network. The measurements are communicated over a network as packets, at a rate unknown to the estimator. Packets may suffer drops and need retransmission. They may suffer waiting delays as they traverse a network path. Works on estimation often assume knowledge of the dynamic model of the measured system, which may not be available in practice. The DNN estimator doesn't assume knowledge of the dynamic system model or the communication network. It doesn't require a history of measurements, often used by other works. The DNN estimator results in significantly smaller average estimation error than the commonly used Time-varying Kalman Filter and the Unscented Kalman Filter, in simulations of linear and nonlinear dynamic systems. The DNN need not be trained separately for different communications network settings. It is robust to errors in estimation of network delays that occur due to imperfect time synchronization between the measurement source and the estimator. Last but not the least, our simulations shed light on the rate of updates that result in low estimation error.
更多
查看译文
关键词
deep learning approach,deep learning,estimation,network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn