Multi-AAV Cooperative Path Planning Using Nonlinear Model Predictive Control with Localization Constraints

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS(2024)

引用 0|浏览13
摘要
In this paper, we solve a joint cooperative localization and path planning problem for a group of Autonomous Aerial Vehicles (AAVs) in GPS-denied areas using nonlinear model predictive control (NMPC). A moving horizon estimator (MHE) is used to estimate the vehicle states with the help of relative bearing information to known landmarks and other vehicles. The goal of the NMPC is to devise optimal paths for each vehicle between a given source and destination while maintaining desired localization accuracy. Estimating localization covariance in the NMPC is computationally intensive; hence, we develop an approximate analytical closed-form expression based on the relationship between covariance and path lengths to landmarks. Using this expression while computing NMPC commands reduces the computational complexity significantly. We present numerical simulations to validate the proposed approach for different numbers of vehicles and landmark configurations. We also compare the results with EKF and RRT * based methods to show the superiority of the proposed closed-form approach.
更多
查看译文
关键词
Location awareness,Path planning,Estimation,Uncertainty,Position measurement,Predictive control,Laplace equations,cooperative localization,nonlinear model predictive control,UAVs
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn