Integrated Bioinformatics Analysis for Identification of the Hub Genes Linked with Prognosis of Ovarian Cancer Patients.
Computational and Mathematical Methods in Medicine(2022)
摘要
BACKGROUND:One of the most usual gynecological state of tumor is ovarian cancer and is a major reason of gynecological tumor-related global mortality rate. There have been multiple risk elements related to ovarian cancer like the background of past cases associated with breast cancer or ovarian cancer, or excessive body weight issues, case history of smoking, and untimely menstruation or menopause. Because of unclear expressions, more than 70% of the ovarian cancer patient cases are determined during the early stage. Material and Methods. GSE38666, GSE40595, and GSE66957 were the three microarray datasets which were analyzed using GEO2R for screening the differentially expressed genes. GO, Kyoto Encyclopedia of Genes, and protein expression studies were performed for analysis of hub genes. Then, survival analysis was performed for all the hub genes.RESULTS:From the dataset, a total of 199 differentially expressed genes (DEGs) were identified. Through the KEGG pathway study, it was noted that the DEGs are mainly linked with the AGE-RAGE signaling pathway, central carbon metabolism, and human papillomavirus infection. The survival analysis showed 4 highly expressed hub genes COL4A1, SDC1, CDKN2A, and TOP2A which correlated with overall survival in ovarian cancer patients. Moreover, the expression of the 4 hub genes was validated by the GEPIA database and the Human Protein Atlas.CONCLUSION:The results have shown that all 4 hub genes were found to be upregulated in ovarian cancer tissues which predict poor prognosis in patients with ovarian cancer.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn