Mosaicking Weather Radar Retrievals from an Operational Heterogeneous Network at C and X Band for Precipitation Monitoring in Italian Central Apennines

Remote sensing(2022)

引用 3|浏览21
摘要
Meteorological radar networks are suited to remotely provide atmospheric precipitation retrieval over a wide geographic area for severe weather monitoring and near-real-time nowcasting. However, blockage due to buildings, hills, and mountains can hamper the potential of an operational weather radar system. The Abruzzo region in central Italy’s Apennines, whose hydro-geological risks are further enhanced by its complex orography, is monitored by a heterogeneous system of three microwave radars at the C and X bands with different features. This work shows a systematic intercomparison of operational radar mosaicking methods, based on bi-dimensional rainfall products and dealing with both C and X bands as well as single- and dual-polarization systems. The considered mosaicking methods can take into account spatial radar-gauge adjustment as well as different spatial combination approaches. A data set of 16 precipitation events during the years 2018–2020 in the central Apennines is collected (with a total number of 32,750 samples) to show the potentials and limitations of the considered operational mosaicking approaches, using a geospatially-interpolated dense network of regional rain gauges as a benchmark. Results show that the radar-network pattern mosaicking, based on the anisotropic radar-gauge adjustment and spatial averaging of composite data, is better than the conventional maximum-value merging approach. The overall analysis confirms that heterogeneous weather radar mosaicking can overcome the issues of single-frequency fixed radars in mountainous areas, guaranteeing a better spatial coverage and a more uniform rainfall estimation accuracy over the area of interest.
更多
查看译文
关键词
weather radar,networking,mosaicking algorithm,data processing,validation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn