Therapeutic Correction of Hemophilia A Using 2D Endothelial Cells and Multicellular 3D Organoids Derived from CRISPR/Cas9-engineered Patient Ipscs.

Biomaterials(2022)

引用 13|浏览23
摘要
The bleeding disorder hemophilia A (HA) is caused by a single-gene (F8) defect and its clinical symptom can be substantially improved by a small increase in the plasma coagulation factor VIII (FVIII) level. In this study, we used F8-defective human induced pluripotent stem cells from an HA patient (F8d-HA hiPSCs) and F8-corrected (F8c) HA hiPSCs produced by CRISPR/Cas9 genome engineering of F8d-HA hiPSCs. We obtained a highly enriched population of CD157+ cells from CRISPR/Cas9-edited F8c-HA hiPSCs. These cells exhibited multiple cellular and functional phenotypes of endothelial cells (ECs) with significant levels of FVIII activity, which was not observed in F8d-HA hiPSC-ECs. After transplantation, the engineered F8c-HA hiPSC-ECs dramatically changed bleeding episodes in HA animals and restored plasma FVIII activity. Notably, grafting a high dose of ECs substantially reduced the bleeding time during multiple consecutive bleeding challenges in HA mice, demonstrating a robust hemostatic effect (90% survival). Furthermore, the engrafted ECs survived more than 3 months in HA mice and reversed bleeding phenotypes against lethal wounding challenges. We also produced F8c-HA hiPSC-derived 3D liver organoids by assembling three different cell types in microwell devices and confirmed its therapeutic effect in HA animals. Our data demonstrate that the combination of genome-engineering and iPSC technologies represents a novel modality that allows autologous cell-mediated gene therapy for treating HA.
更多
查看译文
关键词
Hemophilia A,Endothelial cells,Induced pluripotent stem cells,Genome-editing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn