A Survey of Supernet Optimization and its Applications: Spatial and Temporal Optimization for Neural Architecture Search

CoRR(2023)

引用 0|浏览12
摘要
This survey focuses on categorizing and evaluating the methods of supernet optimization in the field of Neural Architecture Search (NAS). Supernet optimization involves training a single, over-parameterized network that encompasses the search space of all possible network architectures. The survey analyses supernet optimization methods based on their approaches to spatial and temporal optimization. Spatial optimization relates to optimizing the architecture and parameters of the supernet and its subnets, while temporal optimization deals with improving the efficiency of selecting architectures from the supernet. The benefits, limitations, and potential applications of these methods in various tasks and settings, including transferability, domain generalization, and Transformer models, are also discussed.
更多
查看译文
关键词
supernet optimization,neural architecture search,temporal optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn