<i>In</i><i> silico,</i> synthesis and anticancer evaluation of benzamide tryptamine derivatives as novel eEF2K inhibitors

Bioorganic & medicinal chemistry letters(2022)

引用 3|浏览19
摘要
Eukaryotic elongation factor 2 kinase (eEF2K), a member of the atypical alpha-kinase family, is highly expressed in a variety of tumor tissues. Inhibition of eEF2K function can effectively kill cancer cells without affecting the function of normal cells. Therefore, eEF2K is a promising new target for cancer therapy. In this study, a series of benzamide tryptamine derivatives were designed and synthesized as novel eEF2K inhibitors. The druggability properties of the synthesized compounds were predicted in silico and performed well. The MTT assay indicated that most of these compounds displayed good antiproliferative activity against human leukemia CCRF-CEM and K562 cell lines. The structure-activity relationship (SAR) revealed that substituents with different electronic effects on the C5 position of indole ring or C2 ', C4 ' positions of benzene ring have a great influence on the antiproliferative activity. Among them, 5j demonstrated the highest anti-proliferative activity with IC50 value of 1.63-3.54 mu M. this compound displayed an effective eEF2K inhibition by down-regulated the level of phosphorylated eEF2 in CCRF-CEM cells. Additionally, the western blot analysis further revealed that 5j also significantly affected eEF2K-related signaling pathways. Anticancer mechanism studies have shown that 5j arrested the cell cycle in G0/G1 and induced CCRF-CEM cells apoptosis. Furthermore, 5j activated cleaved caspase-9, 8, 3 and cleaved PARP in a time-dependent manner, which suggesting that 5j induced cancer cells apoptosis through both intrinsic and extrinsic pathways. In summary, benzamide tryptamine derivative 5j represents a novel and promising lead structure for the development of eEF2K inhibitors in cancer therapy.
更多
查看译文
关键词
Anticancer,Benzamide tryptamine derivatives,Design and synthesis,Molecular docking,Cell apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn